OEM Solutions for Anesthesiology and Respiratory Support

D

In biomedical signal processing, gas monitoring and respiratory support since 1989

С

www.treat-on.com

+7 (343) 304-60-57

onten	t			About	Triton Electronic Systems de solutions for medical device on gas monitoring solutions
	OEM Solutions for Anesthesiology and Respiratory Support		DEM Solutions		Our strategy is to provide re- for our customers, to suppor your leadtime for launching
	Depth of Anesthesia and Sedation Module	4	0		Our main values
	Multigas Module	10			
	Mainstream CO ₂ Sensor	14			Inspired & expired gas monitoring (
	Sidestream CO ₂ Sensor	18			Volatile anesthetics monitoring Cardiac output monitoring
	By developing and mar advanced medical solu	nufacturing tions		Gross floor area	
	we help doctors save li	ves		Employees	
				Design engineers	
			2	Selling to countries	

OEM Solutions

develops and supplies customized ce industry since 1989. We focused ns and biomedical signal processing.

ready-to-use and plug&play solutions port your developments and to reduce ig new functions to the market.

> Fast and easy integration Highest protection (IP, EMC, safety) Regulatory & documentary support Original design and private labelling Cutting edge patented techologies

MGA Module

Depth of Anesthesia and Sedation Module

Complete solution for anesthesiologists: Monitoring of Sedation Level

CE 0483

Depth of anesthesia and sedation module is designed to provide long and continuous monitoring of the Brain Activity Index (AI).

Application: anesthesiology, including perioperative period, resuscitation, intensive care, procedural sedation.

Identified Parameters

AI	Brain Activity Index	Indicates the level account informatic
SR	EEG Signal Suppression Rate	Reflects the relativ
SQI	EEG Signal Quality Index	Reflects the accur (Brain Activity Inde
EMG	Electromyographic component level	Indicates the level of facial muscles
Z1, Z2, Z3	Electrode impedance	Demonstrates the electric contact wi

This is the solution for the daily routine depth of anesthesia monitoring, a standard monitoring tool in a medical institution, thereby increasing the patient's safety and quality of patient care.

Depth of anesthesia and sedation module can be connected to the monitoring host device and transfers parameters of the brain activity index, signal quantity index, electromiographic component suppression rate and additional states and statuses.

MGA Module

Depth of anesthesia and sedation module

Connectors for electrodes

l of consciousness depression by analyzing EEG, taking into on on typical signs of anesthetics' impact on patients

ve duration of EEG suppression segments e interval

racy level of calculated Al ex)

l of electrical activity

e quality of electrodes application and electrodes' ith the patient's skin

Al value

90-100

80–90

60-80

0–60

30-40

20–30

0-10

* According

AI

100

80

60

40

20

0

Interpreting AI (Brain Activity Index) Data*

Advantages of Anesthesia **Depth Monitoring**

Clinical stag	ges of anesthesia	Clinical signs		
Awake	Awake		Pr Pr pp of	otential E Inadequ
Anesthesia	stage I – light sedation	Incomplete awakening, patient opens eyes and maintains visual contact in response to a voice for 10 seconds or less	Sedation With continuo to ensuring pa	
Anesthesia	stage II – sedation	Patient moves and opens eyes in reaction to voice but does not fix the eyes – no visual contact or no response to voice but eye movements and eye opening after a physical stimulation persists	hav of t sec mo ina	re to provide using anesthe datives. Acco ore than 69% dequate seda
Anesthesia	stage III – surgical state	No response to voice or physical irritants	bot	deep. This c h during the erative stage.
Anesthesia	stage IV – deep anesthesia,	BS (burst – suppression) patterns emerge		
Anesthesia may reach	stage V – deeper anesthesia 10 seconds	compared to stage IV, length of suppression episodes		
Anesthesia and more of	stage VII – extremely deep a f the whole signal duration	nesthesia, suppression episodes constitute 75%		
			Pr	reventing
			A	vareness
	Anosthetics of	Iministration Awakening	And rec dui mis and	esthesia awa ollections of f ring general a salignment be esthetic and i
	Anestnetics ac		Th	e following
\sim		Surgery	gro	up for alles
		Surgery	· t · t · t · t · t	aking oplates using neurom suffering from with previous awakening du with a co-path elderly.
			6	

Potential Effects of Inadequate Sedation* ntial Effects adequate Insufficient sedation ontinuously raising requirements Excitation ring patient's safety, physicians provide more careful control g anesthetics, hypnotic drugs or es. According to the statistics, Sleep violations nan 69% of patients demonstrate uate sedation – either insufficient or Myocardial ischemia ep. This can cause adverse effects uring the surgery and at the post-Unsynchronized ventilation Self-extubation Posttraumatic distress and depression * Mehta S. Sedation Strategies in the Critically III // Yearbook of Intensive Care and Emergency Medicine, 2005. Using MGA minimizes the adverse effects of inadequate sedation, ensuring optimal and predictable sedation level and patient's quicker recovery from anesthesia. enting Anesthesia Individual Selection of Sedative Doses reness Anesthesia awareness cannot be esia awareness is post-operative ctions of the event happening measured directly. Traditional clinical signs like motions, tachycardia, hypertension, general anesthesia, caused by nment between the need for pupillary reaction and lacrimation are etic and its delivery. supposed to be unreliable predictors of and the clinical situation. anesthesia awareness but they must be llowing patients are in the risk monitored in every patient and considered This approach ensures: for anesthesia awareness: substantially.

- ng opiates or alcohol;
- neuromuscular relaxants;
- ring from respiratory problems;
- previous cases of accidental
- kening during the surgery;
- a co-pathology;
- ly.

MGA Module

Excessive sedation
Depressed breathing, hypotonia, depressed gastrointestinal tract motility
Prolonged depression of consciousness
Prolonged ventilation duration
Prolonged stay at ICU and clinic in general
Increased healthcare costs

Selecting the optimal drug dosage with MGA is based on EEG analysis and displaying the AI (Brain Activity Index), taking into account individual body features

- maximum safety and efficiency of the delivered anesthetic support;
- reducing the risk of drugs' adverse effect on the body;
- saving expensive drugs.

MGA Module

8

Algorithm of Al (Brain Activity Index) Calculation

Anesthesia depth assessment is based on a comprehensive electroencephalogram (EEG) analysis using unique algorithms developed by Triton Electronic Systems engineers. A simplified algorithm for AI (Brain Activity Index) calculation is performed below.

EEG and EMG signals are registered from the electrodes applied on the frontotemporal area of the patient's head.

The registered signal is subjected to digital filtration: motion artifacts, power main disturbances and noise from electrosurgical equipment, other bioelectrical signals, etc. are removed.

The algorithm of EEG analysis includes statistical information on typical signs of various groups of anesthetics' impact on the patient's EEG. During the analysis, the level of compliance is established between the registered EEG signal and each type of consciousness depression.

As a result of data analysis, the following indicator values are obtained:

AI (Brain Activity Index);

SR - EEG Signal Suppression Rate, taking into account the total duration of segments with low-voltage activity (suppression segments) over the last minute. Displayed as a percentage. SR > 0 is usual at AI < 50.

To get accurate data on anesthesia depth monitoring:

- assess the signal quality continuously;
- provide control of electrodes' impedance;
- prevent impedance values from increasing;
- minimize artifacts and other noise.

For this purpose, the following technical solutions are implemented in MGA module:

Signal Quality

SQI (Signal Quality Index) is continuously monitored. It takes into account the values of EEG cable electrode' impedance, noise level from artifacts, high-frequency noise and power main disturbances within EEG, etc.

If SQI = 0, displaying the values of AI (Brain Activity Index), SR and EMG Component Level is blocked. A message on the most significant cause for SQI dropping is transferred.

The level of EEG signal noise is measured continuously.

Electrode impedance is an important parameter to indicate a quality of contact between skin and electrodes. Low impedance is an essential condition to get high quality signal.

Technical Specification

Patient age groups	Adul
Aneshetics	Work
Displayed parameters	Brair EEG Elect Elect
The recommended types of electrodes	31.1 F907 White G210
Dimensions & Weght	115
Power	Volta
Environment	0-40
Intergation	UAR
Standards	Deve IEC 6

OEM Delivery Kit

Depth of anesthesia and sedation module MGA

Electrodes

100 pcs.

Its and children over 10 years old

ks with both inhaled and intravenous anesthetics

n Activity Index

Signal Suppression Rate

Signal Quality Index

tromyographic component level

trodes impedance (Z1-Z3)

245.21, 24 mm, Covidien LLC, USA; 79/RU3236-100 FIAB SpA, Italy; te Sensor 40713 Ambu A/S. Denmark: 0C/F-150S Nihon Kohden Corporation, Japan.

x 65 x 25 mm, 0.2 kg

age: 5.0V ± 5% DC. Power consumption: 2W

) °C, RH 40-80% (at air temperature +25 °C), 600-800 mm Hg

RT interface, ODU connector

eloped in accordance with IEC 60601-1, IEC 60601-1-2, 60601-2-26, IEC 60601-2-40

TESM.943129.007-02 1 pcs

www.treat-on.com

Multigas Module

D

Complete solution for anesthesiologists: Anesthesia Gas Monitoring

Multigas Module

10

Appearance

Device

housing

		Co
Multigas Benefits	Easy integration.	Se
	Maintenance-free.	Co
	Standard accessories.	ar
	No routine calibration.	Re
		Co

- Multigas is anaesthesia gas analyzer intended for continuous sidestream measurement and monitoring of gas concentration in the patient's airways. Specially designed for implementation into medical devices, including
- anaesthesia machines, patient monitors and ventilators.

Measured Parameters

- Concentration of anesthetic gas agents (Ax): lalotane (option), Isoflurane (Iso), Desflurane (Des), Sevoflurane (Sev) on inspiration (FiAx) and expiration (EtAx).
- Concentration of CO₂ on inspiration (FiCO₂) nd at the end of exhalation (EtCO₂).
- Respiration rate (RR).
- Concentration of O₂ (option) on inspiration (FiO₂) and at the end of exhalation (EtO2).

11

12

Agent Measuring Ranges

Gas	Measurement range, Vol %	Accuracy	odule
lsoflurane (Iso)	0–5	±(0.2% + 15% of gas level)	Itigas Mo
Desflurane (Des)	0–17	±(0.2% + 15% of gas level)	Mu
Sevoflurane (Sev)	0–7	±(0.2% + 15% of gas level)	
Halothane (Hal) (option)	0–5	±0.2	
CO ₂	0–15	$\pm (0.43\% + 8\%$ of gas level)	
O ₂ (option)	0–100	±2	

OEM Delivery Kit

Multigas Module	TESM.943129.001	1 pcs.
Water trap	60-1300-00 DRYLINE	1 pcs.
Sampling line	010-700 Flexicare	1 pcs.
Connector	15M-22M/15 REF2713 or 15M-22M/15 010-638 Flexicare	1 pcs.
Interface cable	TESM.704021-03	1 pcs.
Developer kit includes: RS232-USB converter; USB cable; CD with development software and data protocol description; Integration manual.	On request ET555494	1 pcs.

Technical Specification

Technology	Non
Measured gases	Ane
Measured parameters	Insp resp
Patient age groups	Adu
Self-diagnosis	Avai
Warm-up time	ISO CO ₂
Response time	2.5 s
Resolution	0.1
Gas sampling rate	50-2
Respiration rate range	0-16
Respiration rate accuracy	± 1
Apnea detection range	10-6
Calibration	No u Sup
Dimensions & Weight	Exte
Power	Volta Pow
Environment/Protection	Wate Ope Stor Tran
Integration	Inter Con Data
Standards	Deve

n-dispersive infrared (NDIR)

esthetic agents: Iso, Des, Sev, Hal (option), CO₂, O₂ (option)

pired and expired gas concentrations of all gases; piration rate; ambient pressure

ult, pediatric

ilability

accuracy within 45 sec. Full accuracy within 10 min , $_{\rm 2}$ channel 10 sec.

sec

250 ml/min

60 breath per minute (BPM)

breath

60 sec, default 20 sec

user calibration required. pports automatic atmospheric pressure compensation

ternal module: 150x95x60 mm. 0.5 kg

age: 5 V \pm 5% ver consumption: 2.5 W, not more than 5 W at the warm-up

ater and splash resistance: IP22 eration: 10–35°C, RH 10–90% brage: 5–40°C, RH <80% at 25°C, 390-900 mmHg insportation: -50 to 50°C

erface: RS232 nnector: 5-pin ODU ta output: FiCO₂, FiO₂, FiAx, EtCO₂, EtO₂, EtAx, Respiration rate

veloped in accordance with the requirements: EN 60601-1, 60601-1-2, EN ISO 80601-2-55, MDD 93/42/EEC, RoHS Multigas Module

5

Sensor QuRe

Mainstream CO₂ Sensor QuRe[®]

Mainstream CO₂ monitoring

QuRe[®] sensor is intended to measure FiCO₂ and EtCO₂ concentration in the mainstream breathing. Designed to use with medical devices for intensive care, ventilation, respiratory support and patient monitoring. The sensor is applicable for all intubated patients from adults to neonates.

OEM Delivery Kit

CO₂ Mainstream Sensor

Reusable airway adapter

adult / pediatric

pediatric / neonate

Evaluation kit includes: RS232-USB converter, USB cable, CD with development sofware and data protocol description, integration manual

QuRe[®] Sensor Benefits

- · The most acurate capnogram.
- · Compact and lightweight.
- Long-life time reusable airway adapters, up to 100 sterilization cycles.
- Suitable for high-frequency ventilation, up to 200 BPM.
- No user calibration required.
- "Everything on board": the measurement channel and analysis CPU are inside the sensor.
 This saves space in your own medical devices.
- Easy intergration to any monitoring or ventilation system, full technical support by the Manufacturer.
- Private labeling solutions (PLM) available.
- · Fastest response time.

Part No.	Quantity
TESM.506001	1
	1
TESM.706020	
TESM.706021	
on request	1

The highest precision of capnogram waveform for true clinical diagnostics.

QuRe[®] data rate is 100 Hz and instant accurate response of the sensor to the changing CO₂ concentration.

The sensor contains an innovative ultrafast semiconductor emitter with a high modulation frequency of the signal.

Due to the precise capnography waveform, the clinicians can analyze each breathing cycle, detect respiratory disorders and provide optimal ventilation mode to a patient.

Technical Specifications

Sensor type
Operation principle
Initialization time
Response time
CO ₂ measurement range
CO ₂ accuracy
CO ₂ resolution
Respiration rate range
Respiration rate accuracy
Apnea detection range
Calibration
Airway adapters
Dimensions & Weight
Power
Environment / Protection
Integration

Non-dispersive infrared (NDIR)
20 sec at an ambient t of 25°C. Full specification within 2 min
~10 ms
0–20% (0–150 mmHg)
0.2 Vol%
0.1 Vol%
0-200 breath per minute (BPM)
±1 breath
10-60 sec, default 20 sec

CO₂ mainstream sensor

No user calibration required

Reusable adult / pediatric. Reusable pediatric / neonatal. Material: airway adapter — polycarbonate optical windows — sapphire glass. Dead space: <5 ml (adult / pediatric), <1 ml (pediatric / neonatal). Sterilization: ethylene oxide / autoclaving up to 100 times.

Sensor: 38x35x23 mm. Weight: 28 g. Cable length: 3 m

Voltage: 5.0 V \pm 5%. Power consumption: 1.3 W, not more then 3 W at the warm-up

Water and splash resistance: IP44 (sensor). Operation: 10 to 35°C, RH 10–90%, 390–900 mmHg. Storage: 5 to 40°C, RH <80% at 25°C. Transportation: -50 to 50°C

Interface: RS232. Connector: Lemo Redel / ODU Data output: $FiCO_2$, $EtCO_2$, Respiration rate. Gas and pressure compensation: available, supplied by host.

Sidestream Sensor

Benefits

Easy integration

Maintenance-free

Standard accessories

No routine calibration

Intended use

Sidestream CO₂ Sensor

Easy integration

Scope

anesthesia and in intensive care departments. *

Clinical application

Assessing of the spontaneous breathing adequacy. Using the capnography level of spontaneous breathing dur recovery after anesthesia can be assessed; Weaning from mechanical ventilation

Controlling of breathing system her seal. A gas leakage is always possi during anesthesia. The leakage car detected by EtCO, monitoring, which value is gradually increasing due to hypoventilation;

Examination of circulatory arrest a resuscitation procedures effectiver

Capnometry is optimal method for monitoring of cardiopulmonary resuscitation (CPR) effectiveness;

Control during the trachea intubati

Examination of ventilation-perfusio mismatch;

Any cause that reduces the lungs perfusion and/or increases the respiratory

18

Sidestream CO₂ sensor is intended for continuous noninvasive monitoring of fraction of inspired CO₂ (FiCO₂) and end tidal CO₂ (EtCO₂), respiration rate (RR) and apnea. Specially designed for implementation into medical devices for anesthesiology, intensive

> Anesthesiology and intensive care departments of professional medical facilities, transportation within professional medical facilities

CO₂ monitoring is recommended by various international associations as a routine procedure for patients during

the ing	Monitoring of hypermetabolic conditions (malignant hyperthermia, thyroid crisis, sepsis, etc.).
on;	References
rmetic ible n be ch	1. ASA Standards for Basic Anesthetic Monitoring, Standards and Practice;
0	2. European Resuscitation Council Guidelines for Resuscitation;
nd ness;	3.American Heart Association (AHA) Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care;
on; n ratio	4. Association of Anaesthetists of Great Britain and Ireland. Recommendations for standards of monitoring during anaesthesia and recovery.

dead space can lead to PEtCO,

decreasing and $\Delta P(a-Et)CO_2$ increasing.

Sidestream Sensor

Appearance

OEM Delivery Kit

Sidestream CO ₂ sensor	TESN.943129.008-01	1 pcs.
Connector	15M-22M/15 REF2713 or 15M-22M/15 010-638 Flexicare	*
Monitoring line	TESN.943129.008-01	1 pcs.
Water trap	60-1300-00 DRYLINE	1 pcs.
Interface cable	TESM.704021-03	1 pcs.

* The items and quantity of the accessories and documents are specified at the order.

Technical Specification

Parameter	Value
Operation principle	Non-
Initialization time	10 s
Time of setting the operating mode	120 s
Gas sampling rate accuracy	50-25 ±10 m (the b
CO ₂ concentration measurement range	0–20 0–150
CO ₂ measurement accuracy	±(0.2 ±(1.5
Measurements drift	±(0,2 ±(1.5
Response time	≈3 s
Rise time	0.2 s
Influence of gas impurities and vapors	±(0.4
Respiratory rate measurement range Respiratory rate measurement accuracy	3–16 ±2 bj
Power	Volta Capa
Weight	0.5
Dimensions (without cable), width x height x depth	58x9
Connector	Lemo
Interface	RS-2

20

e (description)

-dispersive infrared spectrophotometry (NDIR)

s (at ambient temperature 25°C)

50 ml/min ml/min in absolute terms or $\pm 10\%$ in relative one biggest from the values)

vol.% (resolution 0.1) 0 mmHg (resolution 0.1)

vol.%+0.02·Kmeas) or 5 mmHg+0.02·Kmeas)

vol.%+0.02·Kmeas) or mmHg+0.02·Kmeas)

43vol.%+0.08·Kmeas)

50 bpm pm

age: 5.0 V ± 5 % acity 1.5 W, maximum 4 W during warming

92x146 mm

o Redel / ODU

232

Sidestream Sensor

21

Sidestream Sensor

22

Export Geography

Operation conditions

Ambient temperature	10–35 °C
Relative humidity	10–90 % (at the temperature 25°C)
Ambient pressure	600 mmHg800 mmHg

Transportation conditions

Ambient temperature	-50°C–50°C
Relative humidity	<80% (at the temperature 25°C)

Storage conditions

Ambient temperature	5–40°C
Relative humidity	<80% (at the temperature 25°C)

Standards

The device meets the safety requirements of EN 60601-1, EN ISO 80601-2-55.

The device is developed to meet the requirements of EN 60601-1-2 concerning electromagnetic compatibility (EMC).

Great Britain	Indonesia
Germany	Malaysia
Portugal	China
Spain	Taiwan
Denmark	Sri Lanka
Ireland	Bangladesh
Hungary	Korea
Czech Republic	Vietnam
Poland	Philippines
Slovakia	Thailand
Moldova	Singapore
India	South Africa

(Dver 40 countries	
		900
	Syria	
E	Egypt	
	Furkey	
F	Peru	
	Jzbekistan	
	Kyrgyzstan	
	Croatia	
	Belarus	
<u>KÇ</u>		

We continuously improve the technological principles and implement new profitable solutions based on market demands D

In biomedical signal processing, gas monitoring and respiratory support since 1989

12/5 Sibirskiy Trakt Ekaterinburg, 620100 Russia

Quality management system certified as meeting the requirements of EN ISO 13485 First revision

September 2021